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1. Introduction

It is well known from the context of String Field Theory (SFT) [1] that the linearized

versions of classical field equations such as Einstein and Yang-Mills ones appear to be

the closeness conditions of certain operators (depending on both the “matter” fields and

c-ghosts) with respect to the BRST operator [2, 3]:
[

Q,φ(0)
]

= 0. (1.1)

One might expect, following further the canonical construction of closed SFT [5] that the

generalization of (1.1) which corresponds to nonlinear field equations, should be of the

form of Generalized/formal Maurer-Cartan equation [4]:
[

Q,φ(0)
]

+ C2

(

φ(0), φ(0)
)

+ C3

(

φ(0), φ(0), φ(0)
)

+ · · · = 0, (1.2)

where Cn are graded (w.r.t. the ghost number) multilinear operations, satisfying the certain

quadratic relations leading to the homotopic Lie algebra [5, 6]. In this paper, we formulate

it only as a hypothesis, namely, we consider only the second order corrections to this

equation, therefore, we give an explicit construction only of operation C2 and verify the

relations between Q and C2. We postpone the proof of the quadratic relations between

higher Cn- operations (homotopy Jacobi identity and other relations of L∞ algebra) until

we will be interested in the higher order corrections to equation (1.2).1 We will consider

them in the further publications on the subject.

1We indicate here that in the case of Yang-Mills equations this proof is already given on the field theory

level [22]: the operations C2 and C3 are shown to satisfy the homotopy Jacobi identity and other relations

necessary for the homotopy Lie algebra. All other operations are equal to zero in this case.
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The nonlinear field equations under discussion (Einstein and Yang-Mills ones) cor-

respond to the 1-loop conformal invariance conditions in the certain perturbed two-

dimensional conformal field theories. Therefore, we expect that the explicit operator for-

mulation of operations Cn will include further corrections and lead to the precise meaning

of the beta-function in conformal perturbation theory (this problem was already mentioned

in the context of SFT [7]).

In [8], we considered the perturbed β-γ system and constructed the C2 operation. In

that case, the one-loop beta function was bilinear in the perturbation operator, therefore,

the second order approximation of (1.2) gave exact results. In this paper, we continue the

consideration of the second order approximation of (1.2), namely:

[

Q,φ
(0)
1

]

= 0,
[

Q,φ
(0)
2

]

+ C2

(

φ
(0)
1 , φ

(0)
1

)

= 0. (1.3)

Here, we have expanded φ(0) =
∑∞

n=1 tnφ
(0)
n with respect to the formal parameter t and in

such a way, (1.3) corresponds to the first and the second order of the expansion of (1.2).

In section 2, we consider operation C2 and introduce some of its properties, which will

allow us to formulate the operator symmetries of (1.2) and to relate (1.3) with the second

order approximation of the equations of the conservation of deformed BRST current in

perturbed theory, considered in [9]. In subsection 2.3, we study an example which is

related to the string theory in background of metric and dilaton described by the sigma

model (see e.g. [10]):

S =

∫

Σ
d2z

(

1

4πα′
Gµν(X)∂Xµ∂̄Xν +

1

2

√
γR(2)(γ)Φ(X)

)

. (1.4)

It is well known [14]–[18] that the equations of conformal invariance for the model (1.4)

are Einstein equations:

Rµν + 2∇µ∇νΦ = 0,

R + 4∇µ∇µΦ − 4∇µΦ∇µΦ = 0. (1.5)

We show that equations (1.3) reproduce, at the lowest orders in α′, equations (1.5) up

to the second order of expansion of the fields: Gµν = ηµν − thµν(X) − t2sµν(X) + O(t3),

Φ = tΦ1 + t2Φ2 + O(t3). We also demonstrate that the operator symmetries of (1.3)

correspond to the diffeomorphism symmetries of equations (1.5). However, there is a

certain ambiguity, since the choice of constant metric ηµν and the deformation parameter

t is definitely not unique. This is a common problem (and it is not our aim in this paper

to get rid of it), when one wants to consider the perturbation theory for the sigma models,

where it is impossible to extract the free action without destroying the geometric context.

In such a way, the first order formulation of the sigma-model, introduced in [8, 13], looks

more promising from this point of view.

In section 3, we consider the boundary CFT corresponding to the open string on the

disc, conformally mapped to the half-plane. We introduce the bilinear operation C2 which

now is a bilinear operation on the space of tensor product of CFT operators with some Lie
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algebra, and consider the analogy of equations (1.3). It appears that one can deduce the

Yang-Mills equations:

∂µFµν + [Aµ, Fµν ] = 0, Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (1.6)

up to the second order in the formal parameter (namely, if one considers the gauge field of

the form Aµ = tA1
µ + t2A2

µ + O(t3)). It is interesting to note that the usual construction of

the open SFT [11] is related to homotopy associative algebra A∞ [6], generated by Witten’s

product [19]. If our conjectures are correct, in the case of open string there also exists the

structure of homotopy Lie algebra.

In conclusion, we give final remarks and mention the ways of further development of

this formalism.

2. CFT, closed strings in background fields and Einstein equations

Notation and conventions

Throughout this section, we assume that all matter field operators have the operator prod-

ucts of the following form:

V (z)W (z′) =
m

∑

r=−∞

n
∑

s=−∞

(V,W )(r,s)p (z′)(z − z′)−r(z̄ − z̄′)−s(log(|(z1 − z2)/µ|)p, (2.1)

where µ is some parameter. We consider the ghost fields b(z), c(z) and b̃(z̄), c̃(z̄) of con-

formal weights (2, 0), (−1, 0) and (0, 2), (0,−1) correspondingly, which have the following

operator products:

b(z)c(w) ∼ 1

z − w
, b̃(z̄)c̃(w̄) ∼ 1

z̄ − w̄
. (2.2)

The so-called ghost number operator is of the following form:

Ng =

∫

(

dzjg − dz̄j̃g

)

, (2.3)

where jg = −bc and j̃g = −b̃c̃. For the given conformal field theory with the holomorphic

and antiholomorphic components of energy-momentum tensor T (z), T̃ (z̄), one can define

a BRST operator:

Q =
1

2πi

∮

JB, JB = jBdz − j̃Bdz̄, (2.4)

jB = cT+ : bc∂c :, j̃B = c̃T̃+ : b̃c̃∂̄c̃ : .

It is well known that this operator becomes nilpotent when the central charges in both

holomorphic and antiholomorphic sectors of the theory are equal to 26.

We couple c, c̃ ghost fields to matter fields and denote the resulting space, that is the

space of differential polynomials in c, c̃-ghosts with matter fields as coefficients, as H0. If

φ(0) ∈ H0 is the eigenvector of the operator Ng with the eigenvalue nφ, we say that this field

– 3 –
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is of ghost number nφ (it is obvious that it can be only nonnegative integer), in other words,

the space H0 is graded with respect to Ng. It is also reasonable to define the spaces H1, H2

of 1-forms ψ(1) = ψ(z)dz− ψ̄(z)dz̄ and 2-forms χ(2) = dz∧dz̄Vχ (such that ψ, ψ̄, Vχ ∈ H0).

Moreover, we associate with any field φ(0) ∈ H0 the following 1-form and 2-form:

φ(1) = dz
[

b−1, φ
(0)

]

+ dz̄
[

b̃−1, φ
(0)

]

, φ(2) = dz ∧ dz̄
[

b−1,
[

b̃−1, φ
(0)

]]

, (2.5)

which satisfy the following descent equations:

[

Q,φ(1)
]

= dφ(0) −
[

Q,φ(0)
](1)

,
[

Q,φ(2)
]

= dφ(1) +
[

Q,φ(0)
](2)

. (2.6)

In the following, we use the notation ∂ = ∂
∂z

, ∂̄ = ∂
∂z̄

.

2.1 Bilinear operation

In this subsection, we discuss the bilinear operation which will be present in the generalized

Maurer-Cartan equation, and relate it to the bilinear operation given in [9].

First of all, we note the following. The object

∫

Cǫ,z

dwV (w)W (z), (2.7)

where Cǫ,z is a circle contour of radius ǫ around point z and V,W are some operators,

according to (2.1) belongs to the space of power series in ǫ and log ǫ/µ. This gives us a

possibility to write down the following definition.

Definition 2.1. For any two operators φ(0), ψ(0) ∈ H0 we define a bilinear operation

M : H0 ⊗ H0 → H0

M
(

φ(0), ψ(0)
)

(z) =
1

4πi
P

∫

Cǫ,z

φ(1)ψ(0)(z) + (−1)nφnψ
1

4πi
P

∫

Cǫ,z

ψ(1)φ(0)(z), (2.8)

where P is a projection on the ǫ0(log ǫ/µ)0 term.

It is interesting to see how this operation behaves under the action of the BRST

operator. The result is given by the following proposition.

Proposition 2.1. Operation M satisfies the relation:

[

Q,M
(

φ(0), ψ(0)
)]

+ M
([

Q,φ(0)
]

, ψ(0)
)

+ (−1)nφM
(

φ(0),
[

Q,ψ(0)
])

= 0. (2.9)

Proof. First, we need to show that BRST operator commutes with projection operator

P. Really, let’s denote

f(V,W )(z) =

∫

Cǫ,z

dwV (w)W (z) (2.10)

for some operators V , W .

From (2.1) we know that f(V,W ) =
∑∞

n=−k

∑∞
m=0 fn,m(V,W )ǫn(log(ǫ/µ))m. The

projection operator acts as follows: Pf(V,W ) = f0,0(V,W ). Therefore we see that

P[Q, f(V,W )] = [Q,Pf(V,W )] = [Q, f0,0(V,W )]. (2.11)
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In such a way we see that BRST operator commutes with projection operator and hence

the relation (2.9) can be easily established by means of the simple formula [Q,φ(1)] =

dφ(0) − [Q,φ(0](1). ¥

Remark. If one denotes C1 = Q and C2 = M , from the Proposition 2.1. we get that the

relations between operations C1 and C2 are as follows:

C1

(

C1(φ
(0))

)

= 0,(2.12)

C1

(

C2

(

φ(0), ψ(0)
))

+ C2

(

C1

(

φ(0)
)

, ψ(0)
)

+ (−1)nφC2

(

φ(0), C1

(

ψ(0)
))

= 0

for any φ(0), ψ(0) ∈ H0. These formulas repeat the corresponding relations of homotopy

Lie algebra [5, 6].

Now we define another bilinear operation.

Definition 2.2. For any two fields φ(0), ψ(0) ∈ H0 we define a bilinear operation K :

H0 ⊗ H0 → H2

K
(

φ(0), ψ(0)
)

(z) =
1

2πi
P

∫

Cǫ,z

φ(1)ψ(2)(z) + (−1)nφnψ
1

2πi
P

∫

Cǫ,z

ψ(1)φ(2)(z), (2.13)

where P is a projection on the ǫ0(log ǫ/µ)0 term.

Remark. This operation K is the projected version of the operation Kǫ defined in [9].

The properties of this operation are summarized in the following proposition.

Proposition 2.2.

1) Operation M is related to operation K in the following way:

M
(

φ(0), ψ(0)
)(2)

= K
(

φ(0), ψ(0)
)

+ dχ(1), (2.14)

where as usual M(φ(0), ψ(0))(2) = dz ∧ dz̄[b−1, [b̃−1,M(φ(0), ψ(0))]], χ(1) ∈ H1, and d

is the de Rham differential.

2) Operation K satisfies the following relation:

[

Q,K
(

φ(0), ψ(0)
)]

+K
([

Q,φ(0)
]

, ψ(0)
)

+(−1)nφK
(

φ(0),
[

Q,ψ(0)
])

=dλ(1) (2.15)

for some λ(1) ∈ H1.

To prove this proposition we need two lemmas.

Lemma 1. Consider V,W ∈ H0. Then the expressions

f1(V,W )(z) =

∫

Cǫ,z

dwV (w)W (z) + (−1)nV nW

∫

Cǫ,z

dwW (w)V (z), (2.16)

f2(V,W )(z) =

∫

Cǫ,z

dw̄V (w)W (z) + (−1)nV nW

∫

Cǫ,z

dw̄W (w)V (z) (2.17)

– 5 –
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can be represented in the following form:

fi(V,W )(z) = ∂ḡi(V,W )(z) + ∂̄gi(V,W )(z) (2.18)

for some operators gi, ḡi ∈ H0, constructed from (V,W )
(r,s)
k and their derivatives.

The proof can be easily obtained using (2.1) and comparing the coefficients (V,W )
(r+1,r)
k

and (W,V )
(r+1,r)
k for (2.16) and the coefficients (V,W )

(r,r+1)
k and (W,V )

(r,r+1)
k for (2.17).

Lemma 2. Let λ(0), ρ(0) ∈ H0. The expression
∫

Cǫ,z

λ(1)(w)dρ(1)(z) − (−1)(nρ+1)(nλ+1)

∫

Cǫ,z

ρ(1)(w)dλ(1)(z) (2.19)

is always exact with respect to the de Rham differential.

Proof. Let’s denote λ(1) ≡ λ(z)dz − λ̄(z)dz̄ and ρ(1) ≡ ρ(z)dz − ρ̄(z)dz̄. Then, showing

that
∫

Cǫ,z

λ(1)(w)(∂ρ̄(z) + ∂̄ρ(z)) − (−1)(nρ+1)(nλ+1)

∫

Cǫ,z

ρ(1)(w)(∂λ̄(z) + ∂̄λ(z)) (2.20)

reduces to sum ∂ᾱ + ∂̄α for some operators ᾱ and α, we prove Lemma 2. Let’s consider

the first term in (2.20). Recalling that the action of ∂· and ∂̄· is equivalent to the action

of Virasoro generators [L−1, ·] and [L̄−1, ·] correspondingly, the first term of (2.20) can be

rewritten as follows:
[

L−1,

∫

Cǫ,z

λ(1)(w)ρ̄(z)

]

+

[

L̄−1,

∫

Cǫ,z

λ(1)(w)ρ(z)

]

−
∫

Cǫ,z

(

[L−1, λ(w)] dw −
[

L−1, λ̄(w)
]

dw̄
)

ρ̄(z)

− 1

2πi

∫

Cǫ,z

([

L̄−1, λ(w)
]

dw −
[

L̄−1, λ̄(w)
]

dw̄
)

ρ(z). (2.21)

We can see that the first two terms in the formula above is represented in the needed form,

while the other ones can be reexpressed:
∫

Cǫ,z

dw̄
([

L̄−1, λ(w)
]

+
[

L−1, λ̄(w)
])

ρ̄(z)−
∫

Cǫ,z

dw
([

L̄−1, λ(w)
]

+
[

L−1, λ̄(w)
])

ρ(z),

(2.22)

using the fact that the integral of the total derivative vanishes. Let’s compare this with

the second term in (2.20):

(−1)(nρ+1)(nλ+1)

∫

Cǫ,z

ρ̄(w)dw̄
([

L−1, λ̄
]

(z) +
[

L̄−1, λ
]

(z)
)

−(−1)(nρ+1)(nλ+1)

∫

Cǫ,z

ρ(w)dw([L−1, λ̄](z) + [L̄−1, λ](z)). (2.23)

In order to see that the sum of (2.22) and (2.23) is equal to the sum ∂β̄ + ∂̄β for some β,

one needs to use Lemma 1. ¥

Proof of Proposition 2.2. The first part easily follows from Lemma 1. Let’s prove the

– 6 –
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second one. First of all, let’s write down the expression for [Q,K(φ(0), ψ(0))]. Using the

descent formulas (2.6), we get:

[

Q,K
(

φ(0), ψ(0)
)]

= −K
([

Q,φ(0)
]

, ψ(0)
)

− (−1)nφK
(

φ(0),
[

Q,ψ(0)
])

(2.24)

+(−1)nφ+1P
∫

Cǫ,z

φ(1)dψ(1) + (−1)nφnψ+nψ+1P
∫

Cǫ,z

ψ(1)dφ(1).

Considering the last two terms, we see that they give the exact 2-form by Lemma 2. This

proves the second part of the Proposition. ¥

Remark. Lemma 1 and Lemma 2 are the generalizations on the case of arbitrary ghost

number of Propositions 2.1. and 2.2. of [9].

2.2 Generalized Maurer-Cartan equations and conformal invariance.

In the paper [9], we considered the equation of the conservation of the BRST charge in the

conformal field theory perturbed by the operator-valued 2-form φ(2). More precisely, we

considered it up to the second order in the formal parameter (coupling constant). Namely,

we expanded φ(2) =
∑∞

n=0 φ
(2)
n tn and the resulting equations up to the second order in t

were:

[

Q,φ
(2)
1

]

(z) = dψ
(1)
1 (z),

[

Q,φ
(2)
2

]

(z) +
1

2πi

∫

Cǫ,z

ψ
(1)
1 φ

(2)
1 (z) = dψ

(1)
2 (z), (2.25)

where ψ
(1)
1 , ψ

(1)
2 ∈ H1 are of ghost number 1, and ψ

(1)
1 , ψ

(1)
2 , φ

(2)
2 are ǫ dependent. Under the

certain conditions, ǫ-independent slice of equations (2.25) is shown to give the equations of

conformal invariance at one loop in the case of two different (the first order and the second

order) sigma models. However, one equation was missing, the so-called dilaton equation.

In this paper, we fill this gap, i.e. we formulate the operator equations which provide the

expression for the total beta-function of perturbed theory up to the second order in the

formal parameter t. Namely, we claim that equations should be of the following form:

[

Q,φ
(0)
1

]

= 0, (2.26)
[

Q,φ,
(0)
2

]

+ 1
2M

(

φ
(0)
1 , φ

(0)
1

)

= 0, (2.27)

such that φ
(2)
i = dz ∧ dz̄b−1b̃−1φ

(0)
i is of ghost number 2. First of all, Proposition 2.2.

leads to the following.

Proposition 2.3. Applying b−1b̃−1 operator to equations (2.26), (2.27), we find the fol-

lowing ones:

[

Q,φ
(2)
1

]

= dφ
(1)
1 ,

[

Q,φ
(2)
2

]

+
1

2
K

(

φ
(0)
1 , φ

(0)
1

)

= dχ
(1)
2 , (2.28)

– 7 –
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where χ
(1)
2 ∈ H1 is some 1-form.

Remark 1. Equations (2.28) can also be represented in the Maurer-Cartan form [9].

In order to do this, one defines a nilpotent operator D = d + θQ and superfields Φ1 =

φ
(2)
1 + θφ

(1)
1 , Φ2 = φ

(2)
2 + θχ

(1)
2 , where θ is the Grassman number anticommuting with d.

Then, defining a bilinear operation K(Φ1,Φ1) = θK(φ
(0)
1 , φ

(0)
1 ), equations (2.28) have the

following form:

DΦ1 = 0, DΦ2 + K(Φ1,Φ1) = 0. (2.29)

Remark 2. The expression Q +
∫

φ(1) can be interpreted as a deformed BRST charge in

the background of φ(2), see e.g. [20].

Therefore, from Proposition 2.3. we see that ǫ-independent slice of equations (2.25) with

ψ(1) = φ(1) can be obtained as descent from (2.26), (2.27). Next, we define the subspace

S0 of H0 in which we will seek the solutions of equations (2.26), (2.27).

Definition 2.3. The space S0 consists of the elements φ(0) ∈ H0 which enjoy three

properties:

1. nφ = 2,

2. b−0 φ(0) = 0,

3. bib̃jφ
(0) = 0 if i + j > −1, bibjφ

(0) = b̃ib̃jφ
(0) = 0 if i + j > 0.

Remark. Condition 2 in Definition 2.3. is usual in canonical SFT [5]. Condition 3 is

included to get rid of additional fields, which however usually decouple from the equations

on V , obtained from (2.26), (2.27).

As we see, the general form of the element from φ(0) ∈ S0 is as follows:

φ(0) = c̃cV + c(∂c + ∂̄c̃)W − c̃(∂c + ∂̄c̃)W̄ + 1/2c∂2cU − 1/2c̃∂̄2c̃Ū . (2.30)

Here, V is a perturbation operator, and we will refer to W , W̄ as gauge terms and U , Ū

as dilatonic terms. We will keep this notation in the following.

In order to get in touch with the examples, we consider the following assumptions

related to perturbation 2-form φ(2).

Assumptions. Let perturbation 2-form be φ(2) = dz ∧ dz̄V (z, z̄), where the perturbation

operator V ∈ H0 of ghost number 0. We will consider the perturbation operators which

satisfy two conditions:

1. LmV = L̄nV = 0 for m,n > 1 and (L0V ) = (L̄0V ), where Lm and L̄n are the

corresponding Virasoro generators.

2. The operator product coefficients (V, V )
(m,n)
l = 0 for m > 2 or n > 2.

Remark 1. The assumptions above correspond to two examples we already considered in

the context of equations (2.25) in [9, 8].
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Remark 2. The condition from point 1 of Assumptions can be rewritten by means of the

BRST operator and b, b̃ -ghosts in the following way:

bi[Q,φ(2)] = b̃i[Q,φ(2)] = 0, (2.31)

when i > 1.

Proposition 2.4. Let φ
(0)
i (i=1,2) be the elements of S0 such that φ

(2)
i = dz ∧ dz̄Vi(z, z̄)

and Vi satisfy Assumptions above. Then equation (2.26) leads to the operator equations on

V1:

(L0V1)(z) − V1(z) + L−1W1 + L−1W1 = 0,

−1/2((L̄1V1) + L−1Ū1) = W1, W̄1 = −1/2((L1V1) + L̄−1U1), (2.32)

L1W1 = 0, L̄1W̄1 = 0, (2.33)

and equation (2.27) leads to the operator equations on V2:

(L0V2) − V2 − 1/2(V1, V1)
(1,1)
0 + 1/2(W̄1, V1)

(0,1)
0

−1/2(V1, W̄1)
(0,1)
0 + 1/2(W1, V1)

(1,0)
0

−1/2(V1,W1)
(1,0)
0 + L̄−1W2 + L−1W̄2 = 0, (2.34)

W̄2 = −1/2((L1V2) − (V1, V1)
(2,1)
0 + (W̄1, V1)

(1,1)
0

+(W1, V1)
(2,0)
0 + 1/2(U1, V1)

(1,0)
0 − 1/2(V1, U1)

(1,0)
0 + L̄−1U2),

W2 = −1/2((L̄1V2) − (V1, V1)
(1,2)
0 + (W1, V1)

(1,1)
0

+(W̄1, V1)
(0,2)
0 + 1/2(Ū1, V1)

(0,1)
0 − 1/2(V1, Ū1)

(0,1)
0 + L−1Ū2), (2.35)

2L1W2 − 2L0U2 + (U1,W1)
(1,0)
0 − (W1, U1)

(1,0)
0 + 2(W1,W1)

(2,0)
0 (2.36)

−(V1,W1)
(2,1)
0 + (V1, U1)

(1,1)
0 + 2(W̄1,W1)

(1,1)
0 − (W̄1, U1)

(0,1)
0 = 0

2(L̄1W̄2) − 2L̄0Ū2 + (Ū1, W̄1)
(0,1)
0 − (W̄1, Ū1)

(0,1)
0 + 2(W̄1, W̄1)

(0,2)
0 (2.37)

−(V1, W̄1)
(1,2)
0 + (V1, Ū1)

(1,1)
0 + 2(W1, W̄1)

(1,1)
0 − (W1, Ū1)

(0,1)
0 = 0.

The Proof can be obtained by the direct calculation.

In the next subsection, we will consider an example of perturbed 2d conformal field theory,

familiar from [9], and observe that the corresponding equations of conformal invariance

obtained by appropriate renormalization techniques coincide with (2.32)–(2.36).

One of the important features of equations (2.26), (2.27) and, therefore, of (2.32)–(2.36)

is that they are automatically covariant, that is they are invariant under symmetry trans-

formations. Really, it is easy to see that due to Proposition 2.1. the following statement

holds.

Proposition 2.5. Let φ
(0)
1 , φ

(0)
2 ∈ H0 be of ghost number 2. Equations (2.26), (2.27) are

invariant under the following symmetry transformations:

δφ
(0)
1 = ε

[

Q, ξ
(0)
1

]

, δφ
(0)
2 = ε

([

Q, ξ
(0)
2

]

+ M
(

ξ
(0)
1 , φ

(0)
1

))

, (2.38)

where ξ
(0)
1,2 ∈ H0 are of ghost number 1 and ǫ is infinitesimal.

Remark. We also note that in the next subsection, we will meet an example in which ξ
(0)
2

depends on ξ
(0)
1 and φ

(0)
1 , generating the structure of algebroid to the transformations (2.38).
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2.3 Example: closed strings in background fields.

Let’s consider the theory of D free massless bosons with the action:

S =
1

4πα′

∫

d2zηµν∂Xµ∂̄Xν , (2.39)

where ηµν is a constant nondegenerate symmetric matrix, µ, ν = 1, . . . ,D and d2z =

idz ∧ dz̄.

The operator product, generated by the free boson field theory, is as follows:

Xα(z1)X
β(z2) ∼ −ηαβα′ log |(z1 − z2)/µ|2, (2.40)

where µ is some nonzero parameter. The energy-momentum tensor is given by such an

expression:

T = −(2α′)−1∂Xµ∂Xµ, T̃ = −(2α′)−1∂̄Xµ∂̄Xµ. (2.41)

Let’s consider the sigma-model action, which describes strings moving in the background

metric Gµν and a dilaton Φ. It is written as follows:

S =

∫

Σ
d2z

(

1

4πα′
Gµν(X)∂Xµ∂̄Xν +

1

2

√
γR(2)(γ)Φ(X)

)

, (2.42)

where R(2) is a curvature on a Riemann surface Σ.

We also assume that Gµν(X),Φ(X) are expanded with respect to some formal param-

eter t:

Gµν = ηµν − thµν(X) − t2sµν(X) + O(t3), (2.43)

Φ = tΦ1 + t2Φ2 + O(t3), (2.44)

where ηµν is independent of X. This allows dealing with φ(2) = (2α′)−1(ηµν −
Gµν)∂Xµ∂̄Xνdz ∧ dz̄ as a perturbation 2-form and applying the Maurer-Cartan equa-

tions to this case. But as we explained in [9], we miss some terms. The reason is that our

formalism does not allow to take into account the so-called contact terms from perturba-

tion theory, namely those, which contain δ-functions in operator products. Therefore, they

should be added to the action. In [9], we explicitly constructed these contact terms at the

second order of the perturbation theory and calculated the proper coefficients for them to

enter the action. So, we have to consider the following perturbation 2-forms:

φ
(2)
1 = dz ∧ dz̄(2α′)−1hµν(X)∂Xµ∂̄Xν , (2.45)

φ
(2)
2 = dz ∧ dz̄(2α′)−1

(

sµν(X)∂Xµ∂̄Xν + 1/2hµρ(X)ηρσhνσ(X)∂Xµ∂̄Xν
)

,

where we included an additional bivertex operator (which is a contribution of contact

terms) in φ
(2)
2 . In this case, the following proposition holds.

Proposition 2.6. Constraints (2.32)–(2.36) for (2.45), where Ui ≡ Ui(X) and Ūi ≡
Ūi(X), lead to the Einstein equations

Rµν + 2∇µ∇νΦ = 0,

R + 4∇µ∇µΦ − 4∇µΦ∇µΦ = 0 (2.46)
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expanded up to the second order in t, where the expansion of metric and dilaton is given

by formulas (2.43), such that correspondence between dilaton and U, Ū -variables is given

by the formula

Φ1 = 1/2t
(

U1 + Ū1 − 1/2h
)

,

Φ2 = 1/2
(

U2 + Ū2 − 1/2s − 1/4hµνhµν
)

, (2.47)

where h = ηµνhµν and s = ηµνsµν.

The Proof is given in appendix.

Thus we see, equations (2.46), corresponding to 1-loop conformal invariance conditions for

the sigma model (2.42), up to the second order of expansion in the formal parameter t have

the generalized Maurer-Cartan structure given by equations (2.26), (2.27).

In the end of subsection 2.2, we mentioned that equations (2.26), (2.27) possess sym-

metries accurately described in Proposition 2.5. Let’s look how it works in this case. Ac-

tion (2.42) and equations (2.46) are invariant under the diffeomorphism transformations.

The infinitesimal change of metric tensor is as follows:

Gµν → Gµν − ε (∇µvν + ∇νvµ) , (2.48)

where ε is infinitesimal. Let’s expand

vν = tv1
ν + t2v2

ν + O
(

t3
)

. (2.49)

Therefore, at the first order in t, the transformation is given by:

hµν → hµν + ε (∂µvν + ∂νvµ) . (2.50)

Let’s consider the following operators of ghost number 1:

ξ
(0)
1 = (2α′)−1

(

cv1
µ(X)∂Xµ − c̃v1

µ(X)∂̄Xµdz̄
)

. (2.51)

It is easy to see that the transformation

φ
(0)
1 → φ

(0)
1 + ε

[

Q, ξ
(0)
1

]

, (2.52)

where φ
(0)
1 is as in Proposition 2.6., reproduces (2.50). At the second order the situation

is more complicated:

sµν → sµν + ε
(

∂µv2
ν + ∂νv

2
µ − 2Γρ

µνv1
ρ = ∂µv2

ν + ∂νv2
µ + v1

ρη
ρσ (−∂σhµν + ∂µhσν + ∂νhσµ)

)

.

(2.53)

One might think that changing the indices from 1 to 2 in (2.51), one gets the expression for

ξ
(0)
2 which will reproduce the diffeomorphism transformation (2.53). However, the situation

appears to be more complicated: the expression for v2
ν should be improved by the terms

v1µ
hµν , the emergence of which can be substantiated by the same reason as the bivertex

operator appeared in φ
(2)
2 . By straightforward calculation, one can obtain that

ξ
(0)
2 = (2α′)−1

(

c
(

v2
µ + 3/4v1ν

hνµ

)

∂Xµ − c̃
(

v2
µ(X) + 3/4v1ν

hνµ

)

∂̄Xµdz̄
)

(2.54)
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together with (2.51) by means of the formula

φ
(0)
2 → φ

(0)
2 + ε

([

Q, ξ
(0)
2

]

+ M
(

ξ
(0)
1 , φ

(0)
1

))

(2.55)

reproduces transformation (2.53) modulo the terms of higher order in α′. It should be

noted that we already met such additional terms during the study of the symmetries of the

equation describing the conservation of BRST current [9].

Let’s now summarize the results concerning symmetries in the proposition.

Proposition 2.7. The transformations (2.52), (2.55), where ξ
(0)
1 , ξ

(0)
2 are given

by (2.51), (2.54), and perturbation operators are given by (2.45), reproduce the infinitesimal

diffeomorphism transformations expanded up to the second order in the formal parameter

modulo the terms of higher order in α′.

Remark 1. The similar results, namely the reproduction of the conformal invariance

conditions and their symmetries from equations (2.26), (2.27), were obtained in the case

of the perturbed beta-gamma systems [12, 13] in [8]. One of the differences which is worth

mentioning is that the equations of conformal invariance at one loop in that model appear

to be bilinear in the perturbation operator, and therefore the second order approximation

appears to be exact.

Remark 2. In [21], the nonlinear corrections to the symmetries of linearized Einstein

equations were obtained in the context of SFT.

3. Open strings and Yang-Mills equations

1. Notation and Conventions. Throughout this section, we will deal with an example

of boundary conformal field theory, i.e. the open string on a disc (conformally mapped

to the upper half-plane), see e.g. [3]. Namely, we will consider the theory with D scalar

bosons, such that the operator products between scalar fields are:

Xµ(z1)X
ν(z2) ∼ −ηµνα′ log |(z1 − z2)/µ|2 − ηµνα′ log |(z1 − z̄2)/µ|2, (3.1)

where ηµν is the constant metric in the flat D-dimensional space either of Euclidean or

Minkovski signature. In this theory, the operators have the following operator products on

the real line:

V (t1)W (t2) ∼
n

∑

k=−∞

(t1 − t2)
−k(V,W )

(k)
l

(

log |(t1 − t2)/µ|2
)k

(3.2)

for some n. We also introduce the energy momentum tensor:

T = − 1

2α′
∂Xµ∂̄Xµ (3.3)

and associated BRST operator:

Q =

∮

dz(cT + bc∂c), (3.4)
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where the operator products between ghost fields are as usual c(z)b(w) ∼ 1
z−w

. The same

way, we define the ghost number operator:

Ng = −
∮

dzbc. (3.5)

We also introduce the space F 0 of differential polynomials in c-ghost field, where the

coefficients are matter field operators. This space is obviously graded with respect to the

ghost number operator. For any φ(0) ∈ F 0, which is an eigenvector of Ng, we will denote

the corresponding eigenvalue by nφ, i.e. ghost number. As in section 2, we define the space

of operator valued 1-forms φ(1) = V dz, where V ∈ F 1 with associated equation: for any

given φ(0) ∈ F 0 one can define φ(1) ∈ F 1 such that

[

Q,φ(1)
]

= dφ(0) −
[

Q,φ(0)
](1)

. (3.6)

The main characters of this section will be the elements of the tensor product F 0
g

= F 0⊗g,

where g is some Lie algebra.

2. Generalized Maurer-Cartan structures and Yang-Mills equations.

Let’s consider two operators φ(0)(t), ψ(0)(t) ∈ F 0
g
. Then, the expression

[

φ(0)(t + ǫ), ψ(0)(t)
]

, (3.7)

where t lies on the real axis and [, ] means the commutator in Lie algebra g. Due to (3.2),

this object is the series in ǫ and log(ǫ/µ), therefore, this allows us to define the following

operation.

Definition 4.1. For any two operators φ(0)(t), ψ(0)(t) ∈ F 0
g

we define a bilinear operation

R : Fg ⊗ Fg → Fg :

R
(

φ(0), ψ(0)
)

(t) = P
[

φ(0)(t + ǫ), ψ(0)(t)
]

− (−1)nφnψP
[

ψ(0)(t + ǫ), φ(0)(t)
]

, (3.8)

where P is the projection on the ǫ0(log(ǫ/µ))0 term and t lies on the real axis. This

operation satisfies the property which is very similar to that from Proposition 2.1.

Proposition 3.1. Let φ(0)(t), ψ(0)(t) ∈ F 0
g
. Then

[

Q,R
(

φ(0), ψ(0)
)]

= R
([

Q,φ(0)
]

, ψ(0)
)

+ (−1)nφR
(

φ(0),
[

Q,ψ(0)
])

, (3.9)

where Q is BRST operator (3.4).

The proof directly follows from the definition. Now, since we got the bilinear operation,

we are able to construct the second order approximation to the generalized Maurer-Cartan

equation:

[

Q,φ(0)
]

+
1

2
R

(

φ(0), φ(0)
)

+ · · · (3.10)

like we did in the previous section, i.e. we expand φ(0) =
∑∞

n=1 tnφ
(0)
n by means of the formal

parameter t and consider the equations which emerge in the first and the second order:

[

Q,φ
(0)
1

]

= 0,
[

Q,φ
(0)
2

]

+
1

2
R

(

φ
(0)
1 , φ

(0)
1

)

= 0. (3.11)
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In order to get in touch with Yang-Mills theory, we need to put some conditions on φ(0).

Namely, we will plug operators φ(0) ∈ F 0
g
, which satisfy the following conditions:

nφ = 1,
[

b−1, φ
(0)

]

= Aµ(X)∂Xµ,
[

bi, φ
(0)

]

= 0 (i > 0), (3.12)

in equations (3.11). Here, Aµ are the components of a Lie algebra-valued 1-form and

normal ordering is implicit. Then, the following statement holds.

Proposition 3.2. Let’s consider φ(0) satisfying conditions (3.12). Then, equations (3.11)

at the first order in α′ are equivalent to the following equations:

∂µ∂µA1
ν − ∂ν∂

µA1
µ = 0, (3.13)

∂µ∂µA2
ν − ∂ν∂µA2

µ +
[

∂µA1
µ, A1

ν

]

+ 2
[

A1
µ, ∂µA1

ν

]

−
[

A1
µ, ∂νA1µ]

= 0,

where [b−1, φ
(0)
i ] = Ai

µ∂Xµ (i=1,2) and the indices are raised and lowered with respect to

the metric ηµν .

Proof. From conditions (3.12) we find that

φ
(0)
i = cAi

µ∂Xµ − ∂cWi, (3.14)

where Wi are some “matter” operators. Let’s consider the coefficient of c∂2c in the expres-

sion [Q,φ
(0)
1 ]. It is easy to see that it is equal to W1 − α′∂µA1

µ. Therefore,

W1 = α′∂µA1
µ. (3.15)

The only term which is left in [Q,φ
(0)
1 ] is that, proportional to c∂c, such that the proportion-

ality coefficient is α′(2∂µ∂µA1
ν − 2∂ν∂µA1

µ)∂Xν . Therefore, the following equation holds:

∂µ∂µA1
ν − ∂ν∂

µA1
µ = 0. (3.16)

Thus, we proved the first part. To prove the second part, we first notice that

R(φ
(0)
1 , φ

(0)
1 ) = 2P

[

φ
(0)
1 (t + ǫ), φ

(0)
1 (t)

]

= α′c∂c
(

2
[

∂µA1
µ, A1

ν

]

+ 4
[

A1
µ, ∂µA1

ν

]

− 2
[

A1
µ, ∂νA1µ]

+ O(α′2)
)

.(3.17)

Therefore, remembering lessons of the proof of the first part, we find that W2 = α′∂µA2
µ

and, therefore, the second of equations (3.11) at the order α′ gives the following equation:

∂µ∂µA2
ν − ∂ν∂

µA2
µ + [∂µA1

µ, A1
ν ] + 2[A1

µ, ∂µA1
ν ] − [A1

µ, ∂νA1µ
] = 0. (3.18)

This finishes the proof. ¥

One can easily notice that equations (3.13) coincide with the Yang-Mills equations

∂µFµν + [Aµ, Fµν ] = 0, Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (3.19)

expanded up to the second order in the formal parameter t, such that the expansion of the

gauge field Aµ is as follows: Aµ = tA1
µ + t2A2

µ + O(t3).
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Remark. It is worth noting that in papers [23, 24], the Yang-Mills action was obtained

from effective action of open SFT and WZW-like open super SFT correspondingly.

The next step is to figure out how the gauge symmetries appear in this formalism. The

following proposition will help in this direction:

Proposition 3.3. Let φ
(0)
1 , φ

(0)
2 ∈ F

(0)
g be of ghost number 1. Then, the following trans-

formations generate the symmetries of equations (3.11):

φ
(0)
1 → φ

(0)
1 + ǫ

[

Q,λ
(0)
1

]

, φ
(0)
2 → φ

(0)
2 + ǫ

([

Q,λ
(0)
2

]

+ R
(

φ
(0)
1 , λ

(0)
1

))

, (3.20)

where λ
(0)
i ∈ F

(0)
g are of ghost number 0 (i=1,2).

The proof directly follows from Proposition 3.1.

If we consider λ
(0)
i = λi(X), then transformations (3.20) have the following form:

φ
(0)
1 → φ

(0)
1 + 2cδA1

µ∂Xµ − α′∂c∂µδA1
µ,

φ
(0)
2 → φ

(0)
2 + 2c

(

δA2
µ∂Xµ + O(α′)

)

− α′∂c
(

∂µδA2
µ + O(α′)

)

, (3.21)

where δA1
µ = ǫ∂µλ1, δA2

µ = ǫ(∂µλ2 + [A1
µ, λ1]), which coincide with the usual Yang-Mills

gauge transformations with the element of gauge transformation expanded up to the second

order in t: λ = tλ1 + t2λ2 + O(t3).

4. Conclusion and final remarks

In this paper, we have considered the formal Maurer-Cartan equations (2.26) and (2.27)

and have shown that they lead to the second order approximations to the corresponding

classical field equations, namely Einstein and Yang-Mills ones. However, our constructions

involve the further corrections in α′ parameter how it usually happens with beta-functions.

Here, we make a claim that at list in case of perturbation by a gauge field, it is possible

to redefine the operation R, i.e. make a restriction of it to some subspace, denoting the

result as R1, and define another graded 3-linear operation R2, which together satisfy the

relations of a homotopy Lie algebra, such that the Yang-Mills equation will be written in

the form of the generalized Maurer-Cartan equation

[

Q,φ(0)
]

+
1

2!
R1

(

φ(0), φ(0)
)

+
1

3!
R2

(

φ(0), φ(0), φ(0)
)

= 0. (4.1)

This subject will be studied in [22].

In the case of Einstein equations, we suggest that such redefinition can be made,

however in contrast to Yang-Mills, due to the strong nonlinearity one might expect that

a number of operations Mn in the GMC equation should be infinite. In this respect, we

note that the first order formulation of string theory in background of metric B-field and

dilaton [8, 13] looks more promising since this formalism does not destroy the geometry

and as it was shown in [8] probably will lead to the generalizations of the homotopy algebra

of Courant/Dorfman brackets.
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A. Proof of Proposition 2.6

Proposition 2.6. Constraints (2.32)–(2.36) for (2.45), where Ui ≡ Ui(X) and Ūi ≡ Ūi(X)

lead to the Einstein equations

Rµν + 2∇µ∇νΦ = 0,

R + 4∇µ∇µΦ − 4∇µΦ∇µΦ = 0 (A.1)

expanded up to the second order in t, where the expansion of metric and dilaton is given

by formulas (2.43), such that correspondence between dilaton and U, Ū -variables is given

by the formula

Φ1 = 1/2t(U1 + Ū1 − 1/2h),

Φ2 = 1/2(U2 + Ū2 − 1/2s − 1/4hµνhµν), (A.2)

where h = ηµνhµν and s = ηµνsµν.

Proof. Here, we will give the expression for the Einstein equations (A.1) with the metric

and a dilaton expanded to the second order of perturbation parameter t:

Gµν = ηµν − thµν(X) − t2sµν(X) + O(t3),

Φ = Φ0 + tΦ1(X) + t2Φ2(X) + O(t3). (A.3)

At the first order in t, we have:

1/2∆hµν − 1/2∂µ∂ρh
ρ
ν − 1/2∂ν∂ρh

ρ
µ + 1/2∂µ∂νh + 2∂µ∂νΦ1 = 0, (A.4)

∆h − ∂µ∂νhµν + 4∂µ∂νΦ1 = 0, (A.5)

where h = ηρσhρσ and ∆ = ∂µ∂µ. The indices are raised and lowered by means of the flat

metric ηρσ. The next order gives:

1/2∆sµν − 1/2∂ν∂βsβµ − 1/2∂µ∂βsβν + ∂ν∂µ(1/2s + 2Φ2 + 1/8hρσhρσ)

+1/2(∂βhβξ − ∂ξ(1/2h + 2Φ1))η
ξρ(∂ρhνµ − ∂µhνρ − ∂νhµρ)

+1/2ηξρ∂ξhνληλα∂ρhαµ + 1/2ηξρησαhρσ∂ξ∂αhµν

−1/2ηξρηλα∂λhξν∂ρhαµ − 1/2∂σ∂µhνχhξαηξχησα

−1/2∂σ∂νhµχhξαηξχησα + 1/4hαρ∂ν∂µhξληαξηρλ = 0. (A.6)
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∆s − ∂µ∂νsµν + 4∂ν∂νΦ2 + 3/4∂αhµν∂αhµν

−1/2∂µhνα∂νhµα + (∂βhβξ − ∂ξ(1/2h + 2Φ1))(∂
ξ(1/2h + 2Φ1)

−∂ρh
ρξ) = 0. (A.7)

Let’s obtain (A.4), (A.5) from (2.32),(2.33). We have:

V1 = 1/2α′−1hµν(X)∂Xµ∂̄Xν , (A.8)

V2 = 1/2α′−1(sµν(X) + 1/2hµρη
ρσhνσ(X))∂Xµ∂̄Xν . (A.9)

So, we just need to substitute these operators in equations (2.32), (2.33). Starting from

the first one

(L0V1) − V1 − 1/2L−1L1V1 − 1/2L̄−1L̄1V1 − 1/2L−1L̄−1(U1 + Ū1) = 0, (A.10)

we see that

(L0V1) − V1 = −1/4∆hµν(X)∂Xµ∂̄Xν , (A.11)

1/2(L1V1 + L̄−1U1) = −1/4(∂βhβξ − 2∂ξU1)∂̄Xξ, (A.12)

1/2(L̄1V1 + L−1Ū1) = −1/4(∂βhβξ − 2∂ξŪ1)∂Xξ . (A.13)

In such a way, we see that equation (A.10) coincides with (A.4) if

U1 + Ū1 = 1/2h + 2Φ1, (A.14)

so our choice for U -terms was correct. Similarly, one obtains that two other equations:

L1W1 = 0, L̄1W̄1 = 0 (A.15)

coincide with (2.33) since

L1W1 = L̄1W̄1 = −1/2∂µ∂νh
µν + ∂µ∂µ(1/2h + 2Φ1). (A.16)

The second order equations are more complicated. Again, we start from (2.34), namely,

using the properties of the operator products we will rewrite it in the following way (from

now on, we will omit zero index in the operator products):

(L0V2) − V2 − 1/2(V1, V1)
(1,1) + (W̄1, V1)

(0,1) + (W1, V1)
(1,0)
0

−L̄−1W
′
2 + L−1W̄

′
2 = 0, (A.17)

W̄ ′
2(z) = −1/2((L1V2)(z) − (L1V1 + L̄−1U1, V1)

(1,1)(z)

−(L̄1V1 + L−1Ū1, V1)
(2,0)(z) + (U1, V1)

(1,0)(z) + L̄−1U
′
2(z)),

W ′
2(z) = −1/2((L̄1V2)(z) − (L̄1V1 + L−1Ū1, V1)

(1,1)(z)

−(L1V1 + L̄−1U1, V1)
(0,2)(z) + (Ū1, V1)

(0,1)(z) + L−1Ū
′
2(z)), (A.18)

where

U ′
2 = U2 − 1/2(V1, V1)

(2,2) − 1/2(U1, V1)
(1,1) + 1/2(L1V1 + L̄−1U1, V1)

(1,2),
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Ū ′
2 = Ū2 − 1/2(V1, V1)

(2,2) − 1/2(Ū1, V1)
(1,1) + 1/2(L̄1V1 + L−1Ū1, V1)

(2,1).

W -terms are:

W ′
2 = 1/8∂ξ(hαβηβνhνξ + 2sξα)∂Xα (A.19)

+1/8(∂βhβξ − 2∂ξ(U1 + Ū1))η
ξρhρα∂Xα − 1/2∂αŪ ′

2∂Xα + O(α′),

W̄ ′
2 = 1/8∂ξ(hαβηβνhνξ + 2sξα)∂̄Xα (A.20)

+1/8(∂βhβξ − 2∂ξ(U1 + Ū1))η
ξρhρα∂̄Xα − 1/2∂αU ′

2∂̄Xα + O(α′).

Here are the explicit formulas for other terms in sum (A.17):

(L0 − 1)V2 = (L0 − 1)(1/2α′−1sµν∂Xµ∂̄Xν)

+(L0 − 1)(1/4α′−1hµβηβαhνα∂Xµ∂̄Xν), (A.21)

(L0 − 1)(1/2α′−1sµν∂Xµ∂̄Xν) = −1/4∆sµν∂Xµ∂̄Xν , (A.22)

(L0 − 1)(1/4α′−1hµβηβαhνα∂Xµ∂̄Xν) = −1/8∆hµνηναhαβ∂Xµ∂̄Xβ (A.23)

−1/8hµνηνα∆hαβ∂Xµ∂̄Xβ

−1/4ηξρ∂ξhµνηνα∂ρhαβ∂Xµ∂̄Xβ = −1/4ηξρ∂ξhµνηνα∂ρhαβ∂Xµ∂̄Xβ

−1/8(∂ν∂ξhξµηναhαβ +∂ν∂
ξhξβηναhαµ)∂Xµ∂̄Xβ

−1/8∂ν((∂βhβξ − 2∂ξ(U1 + Ū1))η
ξρhρα)∂̄Xν∂Xα

−1/8∂ν((∂βhβξ − 2∂ξ(U1 + Ū1))η
ξρhρα)∂Xν ∂̄Xα

+1/8(∂βhβξ − 2∂ξ(U1 + Ū1))η
ξρ∂νhρα∂̄Xν∂Xα

+1/8(∂βhβξ − 2∂ξ(U1 + Ū1))η
ξρ∂αhρν ∂̄Xν∂Xα,

(V1, V1)
(1,1) = (4α′2)−1(hρσ∂Xρ∂̄Xσ, hλµ∂Xλ∂̄Xµ)(1,1) (A.24)

= 1/2ηξρησαhρσ∂ξ∂αhµν∂Xµ∂̄Xν

−1/2ηξρηλα∂λhξν∂ρhασ∂Xν ∂̄Xσ

−1/4∂σ∂ρhµνhξαηξνησα∂Xµ∂̄Xρ − 1/4∂σ∂ρhµνhξαηξνησα∂Xρ∂̄Xµ

+1/4∂ρhµν∂σhξαηξνησµ∂Xρ∂̄Xα + 1/4∂ρhµν∂σhξαηξνησµ∂Xα∂̄Xρ

+1/4hαρ∂ν∂µhξληαξηρλ∂Xµ∂̄Xν + O(α′),

−1/2(L̄1V1 + L−1Ū1, V1)
(1,0) = (8α′)−1((∂βhβξ − 2∂ξŪ1)∂Xξ , hµν∂Xµ∂̄Xν)(1,1)(A.25)

= −1/8∂ρ(∂
βhβξη

ξαhαβ)∂Xρ∂̄Xβ

+1/8∂βhβξη
ξα∂ρhαβ∂Xρ∂̄Xβ

+1/8∂λ∂βhβρη
λαhαβ∂Xρ∂̄Xβ − 1/8(∂βhβξ

−2∂ξŪ1)η
ξλ∂λhρβ∂Xρ∂̄Xβ + O(α′),

− 1/2(L1V1 + L̄−1U1, V1)
(0,1) = (8α′)−1((∂βhβξ − 2∂ξU1)∂̄Xξ, hµν∂Xµ∂̄Xν)(1,1)(A.26)

= −1/8∂ρ(∂
βhβξη

ξαhαβ)∂̄Xρ∂Xβ

+1/8∂βhβξη
ξα∂ρhαβ ∂̄Xρ∂Xβ
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+1/8∂λ∂βhβρη
λαhαβ ∂̄Xρ∂Xβ

−1/8(∂βhβξ − 2∂ξU1)η
ξλ∂λhρβ ∂̄Xρ∂Xβ + O(α′).

Collecting formulae (A.19)–(A.26) in (A.17), we arrive to the Einstein equations (A.6),

putting

U2 + Ū2 = 1/2s + 2Φ2 + 1/4hµνhµν = U ′
2 + Ū ′

2 + 1/8hµνhµν + O(α′). (A.27)

Now let’s obtain the last equation (A.7) from (2.36). Let’s write the expressions for

different terms from equation (2.36):

W2 = 1/8∂ξ(hαβηβνhνξ + 2sξα)∂Xα

+1/16(∂βhβξ − ∂ξ(2U1 + 4Ū1))η
ξρhρα∂Xα

+1/32∂ρ(hµνhµν) − 1/2∂ρŪ2∂Xρ, (A.28)

α′−1
(2(L1W2) − 2(L0U2)) = −1/4∂ξ∂α(hξµηµνh

να + 2sξα)

−1/16∂α∂α(hµνhµν) + ∂α∂α(U2 + Ū2)

−1/8(∂α∂βhβξ − ∂α∂ξ(2U1 + 4Ū1))h
αξ

−1/8(∂βhβξ − ∂ξ(2U1 + 4Ū1))∂αhνξ = −1/2∂ξ∂
αhξµhµα − 1/4∂ξh

ξµ∂αhµα

−1/4∂αhξµ∂ξhµα − 1/2∂ξ∂αsxiα

−1/8hαξ∂α∂βhβξ + 1/8hαξ∂α∂ξ(2U1 + 4Ū1)

−1/8∂αhαξ∂βhβξ + 1/8∂ξ(2U1 + 4Ū1)∂αhαξ

+1/2∂µ∂µ(1/2s + 2Φ2) + 3/4∂ρ∂νh
ναhρα

+3/8∂ρhµν∂ρh
µν − 3/4hµν∂µν(U1 + Ū1), (A.29)

α′−1
2(U1,W1)

(1,0) = 1/2(∂βhβξ − 2∂ξŪ1)∂
ξU1 + O(α′)

α′−1
2(W1,W1)

(2,0) = −1/8(∂βhβξ − 2∂ξŪ1)(∂βhβξ − 2∂ξŪ1) + O(α′)

α′−1(U1, W̄1)
(0,1) = 1/4(∂βhβξ − 2∂ξU1)∂

ξU1 + O(α′)

−α′−1(V1,W1)
(2,1) = −1/8hξα∂α(∂βhβξ − 2∂ξŪ1) + O(α′)

α′−1(V1, U1)
(1,1) = 1/2hαβ∂α∂βU1. (A.30)

Summing (A.29) and (A.30), we arrive to equation (2.36). It is easy to see that for our

choice of V and U, Ū -terms, (2.37) leads to the same equation. This ends the proof of the

proposition.¥
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